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We consider a very thin vortex filament in an unbounded, incompressible and 
inviscid fluid. The filament is not necessarily plane. Each portion of the filament 
moves with a velocity that can be approximated in terms of the local curvature 
of the filament. This approximation leads to a pair of intrinsic equations giving 
the curvature and the torsion of the filament, as functions of the time and the 
arc length along the filament. It is found that helicoidal vortex filaments are 
elementary solutions, and that they are unstable. 

The intrinsic equations also suggest a linear mechanism that tends to produce 
concentrated torsion and a non-linear mechanism tending to disperse such 
singulari ties. 

1. Introduction 
This paper is motivated by a desire to understand simple three-dimensional 

flows endowed with vorticity. For simplicity, we assume that the fluid is incom- 
pressible and inviscid. For the same reason, we assume that the vorticity is 
concentrated along a single filament. If this single filament is straight or circular, 
we have a well-known situation, and therefore the next step in difficulty must 
introduce the concept of a variable curvature of the filament. As we shall see, 
a variable curvature produces torsion and the two phenomena are closely coupled. 

Let us consider a vortex filament having a constant cross-section n-a2 (see 
figure 1) and a circulation I?. The filament is transported by the velocity induced 
by its own vorticity. At any point in space, the induced velocity V can be 
calculated by the Biot-Savart formula 

where o is the vorticity and r = x - g. If this equation is applied to the case of 
a circular vortex ring of radius R in the limit a / R  -+ 0, one finds that the velocity 
of the ring is constant and (Prandtl & Tietjens 1934) that it  amounts to 

It is remarkable that if a+O, the velocity becomes infinite. Physically, this 
is due to the fact that the net velocity induced a t  a point P (figure 1) is mainly 
the result of a particular type of contribution. Some contributions cancel each 
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other, such as those of the two fluid elements A and A'. Others are weak because 
they come from distant fluid elements such as C and C'. Everything being 
considered, the leading contribution comes from fluid elements such as Band B' 
which are near the surface of a tangent cylinder (indicated by dashed lines in 
figure 1). If a vanishes while R and I? stay constant, the influential elements 
such as B and B' move toward P and induce large velocities. 

FIGURE 1. The vortex filament. The short arrows indicate the vorticity. At point P,  the 
particles B and B' induce a velocity perpendicular to the page. Particles A and A' induce 
velocities of opposite directions which cancel out. Particles C and C' are too far away to  
be effective. 

The same velocity is obtained at the point P if we simply assume that the 
filament is no longer circular, but that i t  is everywhere so thin that R/a is large. 
If s denotes the distance along the central line of the vortex filament, we can 
consider V and R as functions of s and of the time t .  Since the logarithm varies 
slowly with the argument, a very good approximation to equation (1.2) is simply 
given by the relation 

V = C/R,  (1.3) 
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where the velocity V is perpendicular to the tangent plane and where C is 
a constant. This equation has been previously obtained by Arms (1963, from 
private communication to Hama) for a plane filament, and used by Hama 
(1962, 1963). It can be shown that, in the limit of a small cross-section, it 
remains valid even if the filament is not plane. A suitable choice of the unit 
of time permits the reduction of C to unity. This paper is essentially concerned 
with the consequences of this approximation. 

2. The intrinsic equations 
If a vortex filament is plane but of variable curvature, the different portions 

of the filament will move normally to the plane at different velocities. Thus, the 
filament will acquire torsion. The numerical experiments of Hama (1962, 1963) 
illustrate this process very clearly. In  general, if a curve moves under the 
influence of its own segments, two equations can be constructed specifying the 
evolution of the radius of curvature R and of the torsion T as functions of s and t : 
these are the intrinsic equations. They relate the two properties of the curve, 
without reference to any origin or orientation of the co-ordinates. 

In  order to obtain the intrinsic equations, we define x(s, t )  as the vector locating 
the position of the filament in Cartesian co-ordinates. With a prime (’) in- 
dicating alas, and a dot (.) indicating a/at, the tangent to the filament is x‘ and 
equation (1.3) becomes 

x = x‘ x XI’, 

where the cross-product assigns the correct directions to the velocity. Note that 
a time reversal is equivalent to a mirror image. By the definition of the tangent, 
we have x’.x’ = 1. 

(2.1) 

(2.2) 

A differentiation gives x’ . X” = 0, (2.3) 

which reminds us that the principal normal is orthogonal to the tangent. The 
radius of curvature R is given by 

K = x“.x“ = 1/R2. (2.4) 

We will use the following quantities: 

A = I x ’ ,  x”, x ” I  = X’ . (x” x x’”), 

T = AIK, 

Jl = X’f’ . X//’, 

where T is the inverse of the radius of torsion. Let us now derive some useful 
relations. Three successive differentiations of (2.3) lead to 

XI. x”’ = - K ,  (2-8) 

(2.9) 

(2.10) 

where roman numerals indicate fourth and fifth derivatives. Similarly, (2.7) gives 

x///. x i v  = I N ’ .  2 (2.11) 
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From (2.4) we obtain successively 
XI' . XI" = &K') 

x" . x i v  = lK" - Jf 
2 

XI'. xv = &KIf/ - 

We can now consider time derivatives such as 

= 2X".x" = 2(xr  x x i v ) . ~ ' '  = - 2A', 

and obtain the first intrinsic equation in the form 

h' = - 2(K'T +KT') .  

Starting from (2.5) and (2.1), we now arrive at the relation 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

A = 2(x' .  x") (x" .Xi\') - 2(x".  x") (x' . X i V )  

+(X'.X')  (X".X")- (X"") (X'.XV) 

- (x' . x')  (xf". Xi") + (x' . XIfJ) (x' . xiq. (2.17) 

Substitutions from (2.2), (2.3), (2.4), (2.8)) (2.9)) (2.11)) and (2.14) lead to 

A = IKk'" 2 +$KK' - 2M'. (2.18) 

It now remains to establish a general relation between A and M .  A t  any point 
of the filament, we can find three Cartesian axes such that x' lies along the first 
axis, and x" along the second. Then we denote by a,  p, y ,  t,he components of x". 
By virtue of (2.3), (2.4), (2.5), and (2.7), we have 

It follows from (2.7), (2.8) and (2.12) that 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

This relation is valid in any system of co-ordinates. Let us now express A in 
terms of the torsion T (equation (2.6)). With some use of (2.16) and (2.22)) we 
can transform (2.18) into the following second intrinsic equation 

(2.23) 

3. Specific properties of the intrinsic equations 
The intrinsic equations (2.16) and (2.23) constitute a badly non-linear system. 

However, it  is obvious from (2.15) that, if A vanishes at some limits or if the 
filament is closed on itself, then 

which indicates the conservation of a total curvature. 
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It is also apparent from (2.18) that, under some conditions, 

The meaning of this relation is mysterious, beyond the remark that a plane 
filament will develop equal and opposite amounts of the quantity A. 

The equations also indicate that if K’ and T‘ are everywhere zero at  some time, 
they will remain zero at later times. This means that a helical vortex filament, 
having constant R and T will satisfy (2.1). Since R is constant, it  will comply 

FIGURE 2. Motion of a helicoidal filament; point P moves toward P‘. 

even with (1.2), provided that a is constant. In  space, the helicoidal filament will 
move with a translation velocity V, and a rotation producing a tangential 
velocity V,. The following relation can be found: 

The direction of motion is shown in figure 2. Incidentally, two intertwined, thin 
filaments of opposite vorticity will move toward each other. 

VE/VT = T/Ki .  (3.3) 

If A = 0, the filament is plane and the only solution is given by 

R = 0, (3.4) 

+K‘ = 0. 
K”’ K’3 K’K” - + - - 2 -  
K K 3  K2 

Equation (3.5) can be integrated twice, with the result 

dK 
(cK + bK2- K3))’ 

(3.5) 

where b and c are integration constants. I f  c =k 0,  the ends of the filament cannot 
be straight. Indeed, the limit K+O leads to K = ~ C ( S - S ~ ) ~ .  I f  c = 0, the 
equation can be integrated exactly to 

(3.7) 
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The constant b controls the overall size of the flow and the choice of so = 0, 
b = 4 is convenient and immaterial. Then the shape of the filament is given by 

x1 = s-2tanhs, (3 .8)  

x2 = 2/~0shs.  (3 .9)  

This curve is shown in figure 3. In  the course of time, the filament simply 
rotates about the x-axis with a velocity proportional to K i  which is proportional 
to  x2. Obviously, the crossing point requires some reappraisal of the whole 
approach. The solution is acceptable only if there is some slight torsion, otherwise 
we should include an interaction between two portions of the filament having 
two widely separated values of s. This was excluded from equation (2 .1) .  

-2  - 1  0 1 2 XI 

FIGURE 3. A stationary and plane vortex filament rotating about the r,-axis. 

Another property of vortex filaments is that, if the curvature is such that 
K = (Acos ks)2, the right-hand side of (2.23) reduces to the term iK'  for any 
value of A and k. If the filament is plane and has a sinusoidal shape with an 
amplitude much smaller than the wavelength, the above reduction occurs and, 
furthermore, the term QK' can be neglected. In  this approximation, the filament 
remains plane and rotates slowly, as found by Kelvin (1880).  

Let us now consider the stability of a helicoidal filament. We assume that 
K and T are constant with small fluctuations K and 7. By linearization of the 
basic equations, one obtains 

K + ~ T , K '  = - 2K07', 

i + 2T07' = +[K' + (K"'/K,)]. 

(3.10) 

(3.11) 

The terms in 2T0a/8s on the left-hand side of (3.10) and (3.11) signify that the 
perturbations propagate along the filament with a velocity 2T0. (In ordinary 
units, this velocity is (ToI'/7r) In (8R/ae i ) ,  since To has the dimension of (length)-l 
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and I' is the circulation.) We can either assume To = 0 or shift to a new arc length 
s - 2Tot in order to eliminate the terms in To. The results then lead to 

k + ~ i v + K ~ ~ ' '  = 0,  

Y+7iv+K07" = 0, 

k = -2KoT' .  

(3.12) 

(3.13) 

(3.14) 

If the perturbation has a wavelength A, and a pulsation 0, (3.12) or (3.13) give 

(3.15) 

Thus, the perturbation propagates if h < 2nR and it grows exponentially if 
h > 2nR. (Note that 2nR is greater than the circumference of the circle pro- 
jected by the helix.) The most unstable wavelength is J2(27rR). A circular 
vortex ring is neutrally stable, by the present argument. 

4. General properties of the intrinsic equations 
In  this section, we shall discuss the properties of K and T in two extreme cases. 

In  the first case, we shall assume that all the terms in (2.23) that contain deriva- 
tives higher than the first one are negligible. This means that there are only 
gradual variations of curvature and torsion. The equations can be written as 
follows: I? + 2TK' + 2T'K = 0, 

K(P + 2TT') - $(K2)' = 0. 

(4.1) 

(4.2) 

If we regard K as the density p of some compressible fluid and 2T as its velocity 
V along the x-axis, (4.1) expresses the conservation of mass, and (4.2) indicates 
that the forces are produced by a pressure - K2/2. Thus, this fictitious fluid 
moves toward the overdense regions. The characteristics are imaginary and the 
system of (4.1) and (4.2) has an elliptical character. Small perturbations obey 
a Laplace equation instead of the usual hyperbolic equation of acoustics, thus 

(4.3) 

In the (s, t)-space, the solutions are shaped either by boundary conditions or by 
singularities. We shall assume that the boundaries are at infinity or without 
influence. Then the solution vanishes unless (4.1) and (4.2) are not everywhere 
equal to zero. If K and T are given at t = 0, a singularity can therefore be 
encountered a t  some later value oft  and at some particular value of s (figure 4). 
Clearly, such a singularity would involve derivatives higher than the first and 
would reintroduce the terms we neglected in the process of obtaining (4.1) and 
(4.2). This suggests that isolated singularities can emerge out of well-behaved 
initial conditions. This is to be expected from the analogy with a fictitious fluid 
of negative pressure. 

Let us now consider the other extreme case when the highest derivatives 
become the leading terms. The second intrinsic equation then reduces to 

T + T" = 0. 

= +h'"/h'. (4.4) 
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The equation for h' (equation (2.16)) contains two terms of first order in the 
operator alas. The term in T a/& represents a kind of transport effect while the 
term in T' can lead to exponential growth. We shall therefore use the approxi- 
mation 

& = -2KT'.  (4.5) 

F ~ a m  4. Production of a singularity in space-time, with elliptic equation. 

Arc s 
FIGURE 5. Dispersion of perturbations in space-time, according to (4.6). 

If we now regard K as nearly constant, while K" and T' are essential, we arrive 
at  the equation 

T+ Ti" = 0. (4.6) 

This is the equation governing the lateral deformation of a thin rod. It has 
the basic property that perturbations of small wavelength are dispersed more 
rapidly than those of large wavelength, as illustrated in figure 5.  
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The existence of the two mechanisms described by (4.3) and (4.6) or figures 
4 and 5 suggests that an isolated vortex filament starting from some random 
initial state may find a statistical equilibrium between production and dispersion 
of regions of concentrated torsion. 

A mass of turbulent fluid can perhaps be considered as a system of entangled 
vortex filaments. If the interaction between filaments is weak in comparison 
with the intrinsic effects discussed in this section, the statistical properties of our 
intrinsic equations could be of interest. However, it  is by no means certain that 
interaction between turbulent vortex lines can be neglected. 
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